Quantifying the breakdown of the Born-Oppenheimer approximation in surface chemistry.

نویسندگان

  • Igor Rahinov
  • Russell Cooper
  • Daniel Matsiev
  • Christof Bartels
  • Daniel J Auerbach
  • Alec M Wodtke
چکیده

The Born-Oppenheimer Approximation (BOA) forms the basis for calculating electronically adiabatic potential energy surfaces, thus providing the framework for developing a molecular level understanding of a variety of important chemical problems. For surface chemistry at metal surfaces, it is now clear that for some processes electronically nonadiabatic effects can be important, even dominant; however, the magnitude of BOA breakdown may vary widely from one chemical system to another. In this paper we show that molecular-beam surface scattering experiments can be used to derive quantitative information about the magnitude of BOA breakdown. A state-to-state rate model is used to interpret the pre-exponential factor of the well-known Arrhenius surface temperature dependence of the electronically nonadiabatic vibrational excitation. We also show that reference to a "thermal limit" provides a quick and simple rule of thumb for quantifying BOA breakdown. We demonstrate this approach by comparing electronically nonadiabatic vibrational inelasticity for NO(ν = 0 → 1) to NO(ν = 15 →ν'≪ 15) and show that the electronically nonadiabatic coupling strengths are of a similar magnitude. We compare experiments for NO and HCl scattering from Au(111) and derive the quantitative relative magnitude for the electronically nonadiabatic influences in each system. The electronically nonadiabatic influences are 300-400 times larger for NO than for HCl, for incidence energies near 0.9 eV.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical reaction dynamics beyond the Born-Oppenheimer approximation.

To predict the branching between energetically allowed product channels, chemists often rely on statistical transition state theories or exact quantum scattering calculations on a single adiabatic potential energy surface. The potential energy surface gives the energetic barriers to each chemical reaction and allows prediction of the reaction rates. Yet, chemical reactions evolve on a single po...

متن کامل

Is the breakdown of the born-oppenheimer approximation responsible for internal conversion in large molecules?

Vibronic radiationless transitions in large polyatomic molecules can be thought of as a process whereby the molecule, initially prepared in a discrete quasistationary state, makes a transition to an adjoining vibronic continuum belonging to a lower electronic state of the same multiplicity. In many instances the transition is analogous to penetration through a barrier between two "nested" poten...

متن کامل

Non-adiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born-Oppenheimer breakdown corrections.

Using a simple model Hamiltonian, the three correction terms for Born-Oppenheimer (BO) breakdown, the adiabatic diagonal correction (DC), the first-derivative momentum non-adiabatic correction (FD), and the second-derivative kinetic-energy non-adiabatic correction (SD), are shown to all contribute to thermodynamic and spectroscopic properties as well as to thermal non-diabatic chemical reaction...

متن کامل

Direct observation of Born-Oppenheimer approximation breakdown in carbon nanotubes.

Raman spectra and electrical conductance of individual, pristine, suspended, metallic single-walled carbon nanotubes are measured under applied gate potentials. The G(-) band is observed to downshift with small applied gate voltages, with the minima occurring at E(F) = +/-(1)/(2)E(phonon), contrary to adiabatic predictions. A subsequent upshift in the Raman frequency at higher gate voltages res...

متن کامل

Electronic Flux Density beyond the Born-Oppenheimer Approximation.

In the Born-Oppenheimer approximation, the electronic wave function is typically real-valued and hence the electronic flux density (current density) seems to vanish. This is unfortunate for chemistry, because it precludes the possibility to monitor the electronic motion associated with the nuclear motion during chemical rearrangements from a Born-Oppenheimer simulation of the process. We study ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 28  شماره 

صفحات  -

تاریخ انتشار 2011